Tuesday, February 18, 2014

NASA's Chandra Sees Runaway Pulsar Firing an Extraordinary Jet

NASA's Chandra X-ray Observatory has seen a fast-moving pulsar escaping from a supernova remnant while spewing out a record-breaking jet – the longest of any object in the Milky Way galaxy -- of high-energy particles.


The pulsar, a type of neutron star, is known as IGR J11014-6103. IGR J11014-6103's peculiar behavior can likely be traced back to its birth in the collapse and subsequent explosion of a massive star.
Originally discovered with the European Space Agency satellite INTEGRAL, the pulsar is located about 60 light-years away from the center of the supernova remnant SNR MSH 11-61A in the constellation of Carina. Its implied speed is between 2.5 million and 5 million mph, making it one of the fastest pulsars ever observed.

"We've never seen an object that moves this fast and also produces a jet," said Lucia Pavan of the University of Geneva in Switzerland and lead author of a paper published Tuesday,in the journal Astronomy and Astrophysics. "By comparison, this jet is almost 10 times longer than the distance between the sun and our nearest star."

The X-ray jet in IGR J11014-6103 is the longest known in the Milky Way galaxy. In addition to its impressive span, it has a distinct corkscrew pattern that suggests the pulsar is wobbling like a spinning top.
IGR J11014-6103 also is producing a cocoon of high-energy particles that enshrouds and trails behind it in a comet-like tail. This structure, called a pulsar wind nebula, has been observed before, but the Chandra data show the long jet and the pulsar wind nebula are almost perpendicular to one another.

"We can see  this pulsar is moving directly away from the center of the supernova remnant based on the shape and direction of the pulsar wind nebula," said co-author Pol Bordas, from the University of Tuebingen in Germany. "The question is, why is the jet pointing off in this other direction?"
Usually, the spin axis and jets of a pulsar point in the same direction as they are moving, but IGR J11014-6103's spin axis and direction of motion are almost at right angles.

"With the pulsar moving one way and the jet going another, this gives us clues that exotic physics can occur when some stars collapse," said co-author Gerd Puehlhofer also of the University of Tuebingen..
One possibility requires an extremely fast rotation speed for the iron core of the star that exploded. A problem with this scenario is that such fast speeds are not commonly expected to be achievable.
The supernova remnant that gave birth to IGR J11014-6013 is elongated from top-right to bottom-left in the image roughly in line with the jet's direction. These features and the high speed of the pulsar are hints that jets could have been an important feature of the supernova explosion that formed it.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations.


David Lindahl Scam

Wednesday, January 29, 2014

New Laser Technology Reveals How Ice Measures Up

ew results from NASA's MABEL campaign demonstrated that a photon-counting technique will allow researchers to track the melt or growth of Earth’s frozen regions.
When a high-altitude aircraft flew over the icy Arctic Ocean and the snow-covered terrain of Greenland in April 2012, it was the first polar test of a new laser-based technology to measure the height of Earth from space.

Aboard that aircraft flew the Multiple Altimeter Beam Experimental Lidar, or MABEL, which is an airborne test bed instrument for NASA's ICESat-2 satellite mission slated to launch in 2017. Both MABEL and ICESat-2's ATLAS instrument are photon counters – they send out pulses of green laser light and time how long it takes individual light photons to bounce off Earth's surface and return. That time, along with ATLAS’ exact position from an onboard GPS, will be plugged into computer programs to tell researchers the elevation of Earth's surface – measuring change to as little as the width of a pencil.


This kind of photon-counting technology is novel for satellites; from 2003 to 2009, ICESat-1’s instrument looked at the intensity of a returned laser signal, which included many photons. So getting individual photon data from MABEL helps scientists prepare for the vast amounts of elevation data they'll get from ICESat-2.
"Using the individual photons to measure surface elevation is a really new thing," said Ron Kwok, a senior research scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It's never been done from orbiting satellites, and it hasn't really been done much with airborne instruments, either."

ICESat-2 is tasked with measuring elevation across Earth's entire surface, including vegetation and oceans, but with a focus on change in the frozen areas of the planet, where scientists have observed dramatic impacts from climate change. There, two types of ice – ice sheets and sea ice – reflect light photons in different patterns. Ice sheets and glaciers are found on land, like Greenland and Antarctica, and are formed as frozen snow and rain accumulates. Sea ice, on the other hand, is frozen seawater, found floating in the Arctic Ocean and offshore of Antarctica.

MABEL's 2012 Greenland campaign was designed to observe a range of interesting icy features, said Bill Cook, MABEL's lead scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. With the photon counts from different surfaces, other scientists could start analyzing the data to determine which methods of analyzing the data allow them to best measure the elevation of Earth's surface.

"We wanted to get a wide variety of target types, so that the science team would have a lot of data to develop algorithms," Cook said. "This was our first real dedicated science mission."

The flights over the ocean near Greenland, for example, allowed researchers to demonstrate that they can measure the height difference between open water and sea ice, which is key to determining the ice thickness. MABEL can detect enough of the laser light photons that bounce off Earth surface and return to the instrument, and programs can then make necessary elevation calculations, Cook said.

"Part of what we're doing with MABEL is to demonstrate ICESat-2's instrument is going to have the right sensitivity to do the measurements," Cook said. "You can do this photon counting if you have enough photons."
In an article recently published in the Journal of Atmospheric and Oceanic Technology, Kwok and his colleagues showed how to calculate elevation from MABEL data, and do so over different types of ice – from open water, to thin, glassy ice, to the snow-covered ice.

"We were pretty happy with the precision," Kwok said. "The flat areas are flat to centimeter level, and the rough areas are rough." And the density of photons detection could also tell researchers what type of ice the instrument was flying over.

The contours of the icy surface are also important when monitoring ice sheets and glaciers covering land. The original ICESat-1 mission employed a single laser, which made it more difficult to measure whether the ice sheet had gained or lost elevation. With a single beam, when the instrument flew over a spot a second time, researchers couldn't tell if the snowpack had melted or if the laser was slightly off and pointed down a hill. Because of this, scientists needed 10 passes over an area to determine whether the ice sheet was changing, said Kelly Brunt, a research scientist at NASA Goddard.

"ICESat-1 was fantastic, but it was a single beam instrument," Brunt said. "We're more interested in repeating tracks to monitor change – that's hard to do."
ICESat-2 addresses this problem by splitting the laser into six beams. These are arranged in three pairs, and the beams within a pair are spaced 295 feet (90 meters), or just less than a football field apart. By comparing the height of one site to the height of its neighbor, scientists can determine the terrain's general slope.
Brunt and her colleagues used MABEL data from the 2012 Greenland campaign to try to detect slopes as shallow as 4 percent incline; their results will be published in the May 2014 issue of the journal Geoscience and Remote Sensing Letters. They counted only a portion of the photons, in order to simulate the weaker laser beams that ICESat-2 will carry. With computer programs to determine the slope, the researchers verified it against results from earlier missions.

"The precision is great," Brunt said. "We're very confident that with ICESat-2's beam pair, we can see slope."
And there are still more things for MABEL to measure. The instrument team is planning a 2014 summer campaign to fly over glaciers and ice sheets in warmer weather. "We want to see what the effects of the melt is," Cook said. "How do glaciers look if they're warmer, rather than colder?"