Thursday, September 30, 2010

Kennedy Space Center Gearing Up for November 1 launch


Technicians at NASA's Kennedy Space Center in Florida are servicing the solid rocket booster hydraulic power units as the space shuttle Discovery stack is readied for launch. Liftoff remains targeted for Nov. 1 at 4:40 p.m. EDT. The remnants of Tropical Storm Nicole passed well offshore from Kennedy and aren't affecting operations at the center. Discovery's processing at the pad also was not affected by the storm. At NASA's Johnson Space Center in Houston, the STS-133 crew will perform a bench review of flight crew equipment.

Tuesday, September 28, 2010

New cosmic phenomenon termed Coreshine


Astronomers have discovered a new, cosmic phenomenon, termed "coreshine," which is revealing new information about how stars and planets come to be.

The scientists used data from NASA's Spitzer Space Telescope to measure infrared light deflecting off cores -- cold, dark cocoons where young stars and planetary systems are blossoming. This coreshine effect, which occurs when starlight from nearby stars bounces off the cores, reveals information about their age and consistency. In a new paper, to be published Friday, Sept. 24, in the journal Science, the team reports finding coreshine across dozens of dark cores.

"Dark clouds in our Milky Way galaxy, far from Earth, are huge places where new stars are born. But they are shy and hide themselves in a shroud of dust so that we cannot see what happens inside," said Laurent Pagani of the Observatoire de Paris and the Centre National de la Recherche Scientifique, both in France. "We have found a new way to peer into them. They are like ghosts because we see them but we also see through them."

Pagani and his team first observed one case of the coreshine phenomenon in 2009. They were surprised to see that starlight was scattering off a dark core in the form of infrared light that Spitzer could see. They had thought the grains of dust making up the core were too small to deflect the starlight; instead, they expected the sunlight would travel straight through. Their finding told them that the dust grains were bigger than previously thought -- about 1 micron instead of 0.1 micron (a typical human hair is about 100 microns).

That might not sound like a big difference, but it can significantly change astronomers' models of star and planet formation. For one thing, the larger grain size means that planets -- which form as dust circling young stars sticks together -- might take shape more quickly. In other words, the tiny seeds for planet formation may be forming very early on, when a star is still in its pre-embryonic phase.

But this particular object observed in 2009 could have been a fluke. The researchers did not know if what they found was true of other dark clouds -- until now. In the new study, they examine 110 dark cores, and find that about half of them exhibit coreshine.

The finding amounts to a new tool for not only studying the dust making up the dark cores, but also for assessing their age. The more developed star-forming cores will have larger dust grains, so, using this tool, astronomers can better map their ages across our Milky Way galaxy. Coreshine can also help in constructing three-dimensional models of the cores -- the deflected starlight is scattered in a way that is dependent on the cloud structures.

Said Pagani, "We're opening a new window on the realm of dark, star-forming cores."

Other authors are Aurore Bacmann of the Astrophysics Laboratory of Grenoble, France, and Jürgen Steinacker, Amelia Stutz and Thomas Henning of the Max-Planck Institute for Astronomy, Germany. Steinacker is also with the Observatoire de Paris, and Stutz is also with the University of Arizona, Tucson.

The Spitzer measurements are based on data from the mission's public archive, taken before the telescope ran out of its liquid coolant in May 2009 and began its current warm mission.

New Images of Saturn's Aurora


A new movie and images showing Saturn's shimmering aurora over a two-day period are helping scientists understand what drives some of the solar system's most impressive light shows.

The new, false-color images and video are available online at: http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov

The movie and images are part of a new study that, for the first time, extracts auroral information from the entire catalogue of Saturn images taken by the visual and infrared mapping spectrometer instrument (VIMS) aboard NASA's Cassini spacecraft. These images and preliminary results are being presented by Tom Stallard, lead scientist on a joint VIMS and Cassini magnetometer collaboration, at the European Planetary Science Congress in Rome on Friday, Sept. 24.

In the movie, the aurora phenomenon clearly varies significantly over the course of a Saturnian day, which lasts around 10 hours 47 minutes. On the noon and midnight sides (left and right sides of the images, respectively), the aurora can be seen to brighten significantly for periods of several hours, suggesting the brightening is connected with the angle of the sun. Other features can be seen to rotate with the planet, reappearing at the same time and the same place on the second day, suggesting that these are directly controlled by the orientation of Saturn's magnetic field.

"Saturn's auroras are very complex and we are only just beginning to understand all the factors involved," Stallard said. "This study will provide a broader view of the wide variety of different auroral features that can be seen, and will allow us to better understand what controls these changes in appearance."

Auroras on Saturn occur in a process similar to Earth's northern and southern lights. Particles from the solar wind are channeled by Saturn's magnetic field toward the planet's poles, where they interact with electrically charged gas (plasma) in the upper atmosphere and emit light. At Saturn, however, auroral features can also be caused by electromagnetic waves generated when the planet's moons move through the plasma that fills Saturn's magnetosphere.

Previous data from Cassini have contributed to a number of detailed snapshots of the aurora. But understanding the overall nature of the auroral region requires a huge number of observations, which can be difficult because Cassini observation time close to Saturn is in high demand, Stallard said.

However, VIMS observations of numerous other scientific targets also include auroral information. Sometimes the aurora can be clearly seen, but sometimes Stallard and colleagues add multiple images together to produce a signal. This wide set of observations allows Cassini scientists to understand the aurora in general, rather than the beautiful specific cases that dedicated auroral observations allow, Stallard said.

Stallard and his colleagues have investigated about 1,000 images from the 7,000 that VIMS has taken to date of Saturn's auroral region.

The new, false-color images show Saturn's aurora glowing in green around the planet's south pole. The auroral information in the two images was extracted from VIMS data taken on May 24, 2007, and Nov. 1, 2008. The video covers about 20 Earth hours of VIMS observations, from Sept. 22 and 23, 2007.

"Detailed studies like this of Saturn's aurora help us understand how they are generated on Earth and the nature of the interactions between the magnetosphere and the uppermost regions of Saturn's atmosphere," said Linda Spilker, Cassini project scientist, based at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The visual and infrared mapping spectrometer team is based at the University of Arizona, Tucson. Stallard's work on Saturn's auroras is funded by the Science and Technologies Facilities Council, Swindon, U.K.

Expedition 24 Crew Successfully Return to Earth

Expedition 24 Commander Alexander Skvortsov and Flight Engineers Tracy Caldwell Dyson and Mikhail Kornienko landed their Soyuz TMA-18 spacecraft in Kazakhstan on Saturday, Sept. 25, wrapping up a six-month stay aboard the International Space Station.

Skvortsov was at the controls of the spacecraft as it undocked at 10:02 p.m. EDT Friday from the Poisk docking port on the station's Zvezda module, a day later than planned because of a Poisk-side hatch sensor problem Thursday night. That problem prevented hooks on the Poisk side of the docking interface from opening, resulting in a one-day landing delay.

Following undocking and a normal descent, the crew landed at 1:23 a.m. near Arkalyk, Kazakhstan, as the station orbited 220 miles above over the Pacific Ocean off the coast of Japan.

Russian recovery teams were on hand to help the crew exit the Soyuz vehicle and adjust to gravity after 176 days in space. Skvortsov and Kornienko will return to the Gagarin Cosmonaut Training Center in Star City, outside of Moscow. Caldwell Dyson will return to Houston aboard a NASA plane.

The trio launched aboard the Soyuz TMA-18 spacecraft from the Baikonur Cosmodrome in Kazakhstan in April. As members of the Expedition 23 and 24 crews, they spent 174 days on the station. Caldwell Dyson and Expedition 25 Commander Doug Wheelock conducted three spacewalks to replace a faulty cooling pump module on the station’s truss structure. Kornienko conducted one spacewalk to perform assembly work on the Russian segment of the complex.

The station is now occupied by Wheelock, who assumed command of the station Wednesday, NASA Flight Engineer Shannon Walker and Russian Flight Engineer Fyodor Yurchikhin, who arrived in mid-June.

A new trio of Expedition 25 crew members, NASA’s Scott Kelly, Alexander Kaleri and Oleg Skripochka, will launch from the Baikonur Cosmodrome on Oct. 7, U.S. time and will arrive on the station about 48 hours later.

Sunday, September 26, 2010

The Soyuz TMA-18 spacecraft Landing


The Soyuz TMA-18 spacecraft is seen as it lands with Expedition 24 Commander Alexander Skvortsov and Flight Engineers Tracy Caldwell Dyson and Mikhail Kornienko near the town of Arkalyk, Kazakhstan on Saturday, Sept. 25, 2010. Russian Cosmonauts Skvortsov and Kornienko and NASA Astronaut Caldwell Dyson, are returning from six months onboard the International Space Station where they served as members of the Expedition 23 and 24 crews.

Thursday, September 23, 2010

Your Face in Space

NASA wants to put a picture of you on one of the two remaining space shuttle missions and launch it into orbit. To launch your face into space and become a part of history, just follow the link below:
https://faceinspace.nasa.gov/index.aspx

Tuesday, September 21, 2010

Jupiter is approaching Earth


Been outside at midnight lately? There's something you really need to see. Jupiter is approaching Earth for the closest encounter between the two planets in more than a decade--and it is dazzling.

The night of closest approach is Sept. 20-21st. This is also called "the night of opposition" because Jupiter will be opposite the sun, rising at sunset and soaring overhead at midnight. Among all denizens of the midnight sky, only the moon itself will be brighter.

Earth-Jupiter encounters happen every 13 months when the Earth laps Jupiter in their race around the sun. But because Earth and Jupiter do not orbit the sun in perfect circles, they are not always the same distance apart when Earth passes by. On Sept. 20th, Jupiter will be as much as 75 million km closer than previous encounters and will not be this close again until 2022.

The view through a telescope is excellent. Because Jupiter is so close, the planet's disk can be seen in rare detail--and there is a lot to see. For instance, the Great Red Spot, a cyclone twice as wide as Earth, is bumping up against another storm called "Red Spot Jr." The apparition of two planet-sized tempests grinding against one another must be seen to be believed.

Also, Jupiter's trademark South Equatorial Belt (SEB) recently vanished, possibly submerging itself beneath high clouds. Researchers say it could reappear at any moment. The dramatic resurgence would be accompanied by a globe-straddling profusion of spots and cloudy swirls, clearly visible in backyard telescopes.

And what was that flash? Amateur astronomers have recently reported a surprising number of fireballs in Jupiter's atmosphere. Apparently, many small asteroids or comet fragments are hitting the giant planet and exploding among the clouds. Researchers who have studied these events say visible flashes could be occurring as often as a few times a month.

Finally, we mustn't forget the moons of Jupiter because they are also having a close encounter with Earth. These are planet-sized worlds with active volcanoes (Io), possible underground oceans (Europa), vast fields of craters (Callisto), and mysterious global grooves (Ganymede). When Galileo discovered the moons 400 years ago, they were no more than pinpricks of light in his primitive spy glass. Big, modern amateur telescopes reveal actual planetary disks with colorful markings.

It makes you wonder, what would Galileo think?

Expedition 24 Crew Members Prepare for landing on Friday in Kazakhstan


Expedition 24 Commander Alexander Skvortsov and Flight Engineers Tracy Caldwell Dyson and Mikhail Kornienko spent Monday preparing for their departure Thursday from the International Space Station. They packed items to be returned to Earth in their Soyuz TMA-18 spacecraft, reviewed deorbit and landing procedures and checked out their Sokol launch and entry suits.

Once they undock, Expedition 25 will begin its increment with Commander Doug Wheelock and Flight Engineers Shannon Walker and Fyodor Yurchikhin continuing their stay on the station. Skvortsov will ceremonially hand command of the station over to Wheelock Wednesday afternoon.

NASA Astronaut Scott Kelly and Russian Cosmonauts Alexander Kaleri and Oleg Skripochka will join Expedition 25 as flight engineers when they dock in the new Soyuz TMA-01M spacecraft next month.

Walker set up equipment for the Anomalous Long Term Effects in Astronauts' Central Nervous System experiment. Also known as ALTEA, the experiment uses several diagnostic technologies to measure the effect of the exposure of crew members to cosmic radiation. Specifically, ALTEA was set up Monday to measure the effectiveness of materials on the orbital complex designed to shield the crew from this radiation.

Meanwhile, Kornienko assisted Skvortsov in a session with the Russian Pilot-M experiment. Pilot-M tests piloting skill in simulations on a laptop under stopwatch control and studies the response of cosmonauts to the effects of stress factors in flight.

Yurchikhin worked with the Matryoshka-R experiment. The Russian payload is designed for sophisticated radiation studies and is named after the traditional Russian set of nested dolls.

Wheelock installed a cable that will send power to the Pressurized Multipurpose Module when it is delivered by the STS-133 crew aboard space shuttle Discovery later this year.

Caldwell Dyson set up the U.S. Sound Level Meter and performed an acoustic survey of the station, the data from which she later downloaded to controllers on the ground.

Wednesday, September 15, 2010

Come to the NASA Goddard Visitor Center for celebrating International Observe the Moon Night


Come to the NASA Goddard Visitor Center on Saturday, September 18, 2010 from 6:30 pm – 10:00 pm for a fun-filled evening celebrating International Observe the Moon Night. Enjoy guest speakers, hands-on activities, laser ranging facility tours*, a public unveiling of Lunar Reconnaissance Orbiter (LRO) images, and of course, Moon observations! Learn why the Moon goes through phases, how it came to look like it does today, and what we’ve discovered as LRO orbits about 30 miles above Moon’s surface. The 2010 International Observe the Moon Night is our opportunity to celebrate the science returned from the Lunar Reconnaissance Orbiter, which was built at NASA Goddard and reached lunar orbit on June 23, 2009.

* Laser ranging facility tours are open to the first 100 people on a first-come, first-served basis, so arrive at 6:30 pm to ensure your space!

Agenda for the International Observe the Moon Night
(Hands-on activities and moon observations from 6:45 pm – 10:00 pm)

6:30 pm - Welcome and introduction
6:45 pm - Remote presentation by a scientist from the Lunar and Planetary Institute in Houston, TX
6:45 pm - Science On a Sphere shows every 15 minutes, hands-on activities begin
7:00 pm - Laser ranging tours begin and run every half hour, moon observation with amateur astronomers begins
7:30 pm - 8:15 pm - Presentation by local lunar expert
8:30 pm - 9:15 pm - Presentation by local lunar expert
9:15 pm - 10:00 pm – Hands-on activities, moon observation with amateur astronomers

NASA's Chandra X-ray Observatory Finds Evidence for Stellar Cannibalism


Evidence that a star has recently engulfed a companion star or a giant planet has been found using NASA's Chandra X-ray Observatory. The likely existence of such a "cannibal" star provides new insight into how stars and the planets around them may interact as they age.

The star in question, known as BP Piscium (BP Psc), appears to be a more evolved version of our Sun, but with a dusty and gaseous disk surrounding it. A pair of jets several light years long blasting out of the system in opposite directions has also been seen in optical data. While the disk and jets are characteristics of a very young star, several clues -- including the new results from Chandra -- suggest that BP Psc is not what it originally appeared to be.

Instead, astronomers have suggested that BP Psc is an old star in its so-called red giant phase. And, rather than being hallmarks of its youth, the disk and jets are, in fact, remnants of a recent and catastrophic interaction whereby a nearby star or giant planet was consumed by BP Psc.

When stars like the Sun begin to run of nuclear fuel, they expand and shed their outer layers. Our Sun, for example, is expected to swell so that it nearly reaches or possibly engulfs Earth, as it becomes a red giant star.

"It appears that BP Psc represents a star-eat-star Universe, or maybe a star-eat-planet one," said Joel Kastner of the Rochester Institute of Technology, who led the Chandra study. "Either way, it just shows it's not always friendly out there."

Several pieces of information have led astronomers to rethink how old BP Psc might be. First, BP Psc is not located near any star-forming cloud, and there are no other known young stars in its immediate vicinity. Secondly, in common with most elderly stars, its atmosphere contains only a small amount of lithium. Thirdly, its surface gravity appears to be too weak for a young star and instead matches up with one of an old red giant.

Chandra adds to this story. Young, low-mass stars are brighter than most other stars in X-rays, and so X-ray observations can be used as a sign of how old a star may be. Chandra does detect X-rays from BP Psc, but at a rate that is too low to be from a young star. Instead, the X-ray emission rate measured for BP Psc is consistent with that of rapidly rotating giant stars.

The spectrum of the X-ray emission -- that is how the amount of X-rays changes with wavelength -- is consistent with flares occurring on the surface of the star, or with interactions between the star and the disk surrounding it. The magnetic activity of the star itself might be generated by a dynamo caused by its rapid rotation. This rapid rotation can be caused by the engulfment process.

"It seems that BP Psc has been energized by its meal," said co-author Rodolfo (Rudy) Montez Jr., also from the Rochester Institute of Technology.

The star's surface is obscured throughout the visible and near-infrared bands, so the Chandra observation represents the first detection at any wavelength of BP Psc itself.

"BP Psc shows us that stars like our Sun may live quietly for billions of years," said co-author David Rodriguez from UCLA, "but when they go, they just might take a star or planet or two with them."

Although any close-in planets were presumably devastated when BP Psc turned into a giant star, a second round of planet formation might be occurring in the surrounding disk, hundreds of millions of years after the first round. A new paper using observations with the Spitzer Space Telescope has reported possible evidence for a giant planet in the disk surrounding BP Psc. This might be a newly formed planet or one that was part of the original planetary system.

"Exactly how stars might engulf other stars or planets is a hot topic in astrophysics today," said Kastner. "We have many important details that we still need to work out, so objects like BP Psc are really exciting to find."

These results appeared in The Astrophysical Journal Letters. Other co-authors on the study were Nicolas Grosso of the University of Strasbourg, Ben Zuckerman from UCLA, Marshall Perrin from the Space Telescope Science Institute, Thierry Forveille of the Grenoble Astrophysics Laboratory in France and James Graham from University of California, Berkeley.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

A Snapshot of Arctic Sea Ice from NASA's Aqua satellite

Sunday, September 12, 2010

Sad news for planet hunters


Bad news for planet hunters: most of the "hot Jupiters" that astronomers have been searching for in star clusters were likely destroyed long ago by their stars. In a paper accepted for publication by the Astrophysical Journal, John Debes and Brian Jackson of NASA's Goddard Space Flight Center in Greenbelt, Md., offer this new explanation for why no transiting planets (planets that pass in front of their stars and temporarily block some of the light) have been found yet in star clusters. The researchers also predict that the planet hunting being done by the Kepler mission is more likely to succeed in younger star clusters than older ones.

"Planets are elusive creatures," says Jackson, a NASA Postdoctoral Program fellow at Goddard, "and we found another reason that they're elusive."

When astronomers began to search for planets in star-packed globular clusters about 10 years ago, they hoped to find many new worlds. One survey of the cluster called 47 Tucanae (47 Tuc), for example, was expected to find at least a dozen planets among the roughly 34,000 candidate stars. "They looked at so many stars, people thought for sure they would find some planets," says Debes, a NASA Postdoctoral Program fellow at Goddard. "But they didn't."

More than 450 exoplanets (short for "extrasolar planets," or planets outside our solar system) have been found, but "most of them have been detected around single stars," Debes notes.

"Globular clusters turn out to be rough neighborhoods for planets," explains Jackson, "because there are lots of stars around to beat up on them and not much for them to eat." The high density of stars in these clusters means that planets can be kicked out of their solar systems by nearby stars. In addition, the globular clusters surveyed so far have been rather poor in metals (elements heavier than hydrogen and helium), which are the raw materials for making planets; this is known as low metallicity.

Debes and Jackson propose that hot Jupiters—large planets that are at least 3 to 4 times closer to their host stars than Mercury is to our sun—are quickly destroyed. In these cramped orbits, the gravitational pull of the planet on the star can create a tide—that is, a bulge—on the star. As the planet orbits, the bulge on the star points a little bit behind the planet and essentially pulls against it; this drag reduces the energy of the planet's orbit, and the planet moves a little closer to the star. Then the bulge on the star gets bigger and saps even more energy from the planet's orbit. This continues for billions of years until the planet crashes into the star or is torn apart by the star's gravity, according to Jackson's model of tidal orbital decay.

"The last moments for these planets can be pretty dramatic, as their atmospheres are ripped away by their stars' gravity," says Jackson. "It has even been suggested recently the hot Jupiter called WASP-12B is close enough to its star that it is currently being destroyed."

Debes and Jackson modeled what would have happened in 47 Tuc if the tidal effect were unleashed on hot Jupiters. They recreated the range of masses and sizes of the stars in that cluster and simulated a likely arrangement of planets. Then they let the stars' tides go to work on the close-in planets. The model predicted that so many of these planets would be destroyed, the survey would come up empty-handed. "Our model shows that you don't need to consider metallicity to explain the survey results," says Debes, "though this and other effects will also reduce the number of planets."

Ron Gilliland, who is at the Space Telescope Science Institute in Baltimore and participated in the 47 Tuc survey, says, "This analysis of tidal interactions of planets and their host stars provides another potentially good explanation—in addition to the strong correlation between metallicity and the presence of planets—of why we failed to detect exoplanets in 47 Tuc."

In general, Debes and Jackson's model predicts that one-third of the hot Jupiters will be destroyed by the time a cluster is a billion years old, which is still juvenile compared to our solar system (about 4-1/2 billion years old). 47 Tuc has recently been estimated to be more than 11 billion years old. At that age, the researchers expect more than 96% of the hot Jupiters to be gone.

The Kepler mission, which is searching for hot Jupiters and smaller, Earth-like planets, gives Debes and Jackson a good chance to test their model. Kepler will survey four open clusters—groups of stars that are not as dense as globular clusters—ranging from less than half a billion to nearly 8 billion years old, and all of the clusters have enough raw materials to form significant numbers of planets, Debes notes. If tidal orbital decay is occurring, Debes and Jackson predict, Kepler could find up to three times more Jupiter-sized planets in the youngest cluster than in the oldest one. (An exact number depends on the brightness of the stars, the planets' distance from the stars, and other conditions.)

"If we do find planets in those clusters with Kepler," says Gilliland, a Kepler co-investigator, "looking at the correlations with age and metallicity will be interesting for shaping our understanding of the formation of planets, as well as their continued existence after they are formed."

If the tidal orbital decay model proves right, Debes adds, planet hunting in clusters may become even harder. "The big, obvious planets may be gone, so we'll have to look for smaller, more distant planets," he explains. "That means we will have to look for a much longer time at large numbers of stars and use instruments that are sensitive enough to detect these fainter planets."

The Kepler mission is managed by NASA's Ames Research Center, Moffett Field, Calif., for the Science Mission Directorate at NASA Headquarters in Washington.

Tuesday, September 07, 2010

Vote on your favorite song

The wakeup song has been a part of the space program since the days of the Apollo missions, and now NASA is giving you two chances to be a part of this history! We need your help selecting wakeup songs to be played during the final missions of the Space Shuttle Program! Select one or both of the missions below:

Listen to and vote on your favorite song from a list of 40 previously played wakeup songs.

The two songs with the most votes will be played during the STS-133 mission.

Cast your vote now through the mission launch date, currently scheduled for November 1, 2010. Winners will be announced during the STS-133 mission.

To vote Click here

Monday, September 06, 2010

NASA's eyes on Hurricane Earl as it heads for New England



NASA satellites and the International Space Station are keeping eyes on Hurricane Earl as it heads for New England. Watches and Warnings are posted in the U.S. northeast.

Having felt the effects of both increasing wind shear and cooler waters, Hurricane Earl weakened to a Category 2 storm on the Saffir-Simpson scale with winds still powerful at 90 knots (104 mph) as it neared the North Carolina coast. It was at this time that the Tropical Rainfall Measuring Mission (TRMM) satellite captured the data about TRMM's rainfall rates.

The rainfall pattern associated with Earl and was made using data from the TRMM satellite when it flew over the storm on September 3 at 08:22 UTC (4:22 a.m. EDT). Rainbands from Earl were visible over the outer banks, eastern North Carolina, and southeastern Virginia, but the storm no longer has a well-defined eye. TRMM observed moderate rainfall mostly to the north of Earl's center.

Meanwhile, from a second vantage point in space, at the International Space Station, Astronaut Douglas Wheelock caught an image of the eye of the storm on September 3. As the ISS flew over Hurricane Earl Wheelock noted that it looked like magnificent chaos from up there on the Space Station and called it incredibly breathtaking.

At 11 a.m. EDT on Sept. 3, Hurricane Earl's maximum sustained winds were near 85 mph. It was located about 350 miles south-southwest of Nantucket, Mass. near 36.8 North and 73.1 West. Earl's minimum central pressure was 961 millibars, and he was moving north-northeast at 21 mph.

Because Earl is now forecast to track farther away from the coast, many of the watches and warnings have been discontinued, but new watches and warnings are in place. The current watches and warnings in effect include: a hurricane warning is in effect for Woods Hole eastward around Cape Cod to Sagamore Beach Massachusetts, including Marthas Vineyard and Nantucket Island. In addition a Hurricane Watch is now in effect for Nova Scotia, Canada from Ecum Secum westward to Digby.

Thursday, September 02, 2010

NASA and ATK Aerospace Systems successfully completed Segment Solid Rocket Motor Test


With a loud roar and mighty column of flame, NASA and ATK Aerospace Systems successfully completed a two-minute, full-scale test of the largest and most powerful solid rocket motor designed for flight. The motor is potentially transferable to future heavy-lift launch vehicle designs.

The stationary firing of the first-stage development solid rocket motor, dubbed DM-2, was conducted by ATK, a division of Alliant Techsystems of Brigham City, Utah. DM-2 is the most heavily instrumented solid rocket motor in NASA history, with a total of 53 test objectives measured through more than 760 instruments.

Prior to the static test, the solid rocket motor was cooled to 40 degrees Fahrenheit to verify the performance of new materials and assess motor performance at low temperatures during the full-duration test. Initial test data showed the motor performance met all expectations.

"For every few degrees the temperature rises, solid propellant burns slightly faster and only through robust ground testing can we understand how material and motor performance is impacted by different operating conditions," said Alex Priskos, first stage manager for Ares Projects at NASA's Marshall Space Flight Center in Huntsville, Ala. "Ground-testing at temperature extremes pushes this system to its limits, which advances our understanding of five-segment solid rocket motor performance."

The first-stage solid rocket motor is designed to generate up to 3.6-million pounds of thrust at launch. Information collected from this test, together with data from the first development motor test last year, will be evaluated to better understand the performance and reliability of the design.

Although similar to the solid rocket boosters that help power the space shuttle to orbit, the five-segment development motor includes several upgrades and technology improvements implemented by NASA and ATK engineers. Motor upgrades from a shuttle booster include the addition of a fifth segment, a larger nozzle throat, and upgraded insulation and liner. The motor cases are flight-proven hardware used on shuttle launches for more than three decades. The cases used in this ground test have collectively launched 59 previous missions.

After more testing, the first-stage solid rocket motor will be certified to fly at temperature ranges between 40-90 degrees Fahrenheit. The solid rocket motor was built as an element of NASA's Constellation Program and is managed by the Ares Projects Office at Marshall. ATK Aerospace Systems is the prime contractor.



NASA has begun to study the sun closer than ever before


NASA has begun development of a mission to visit and study the sun closer than ever before. The unprecedented project, named Solar Probe Plus, is slated to launch no later than 2018.

The small car-sized spacecraft will plunge directly into the sun's atmosphere approximately four million miles from our star's surface. It will explore a region no other spacecraft ever has encountered. NASA has selected five science investigations that will unlock the sun's biggest mysteries.

"The experiments selected for Solar Probe Plus are specifically designed to solve two key questions of solar physics -- why is the sun's outer atmosphere so much hotter than the sun's visible surface and what propels the solar wind that affects Earth and our solar system? " said Dick Fisher, director of NASA's Heliophysics Division in Washington. "We've been struggling with these questions for decades and this mission should finally provide those answers."

As the spacecraft approaches the sun, its revolutionary carbon-composite heat shield must withstand temperatures exceeding 2550 degrees Fahrenheit and blasts of intense radiation. The spacecraft will have an up close and personal view of the sun enabling scientists to better understand, characterize and forecast the radiation environment for future space explorers.

NASA invited researchers in 2009 to submit science proposals. Thirteen were reviewed by a panel of NASA and outside scientists. The total dollar amount for the five selected investigations is approximately $180 million for preliminary analysis, design, development and tests.

The selected proposals are:

-- Solar Wind Electrons Alphas and Protons Investigation: principal investigator, Justin C. Kasper, Smithsonian Astrophysical Observatory in Cambridge, Mass. This investigation will specifically count the most abundant particles in the solar wind -- electrons, protons and helium ions -- and measure their properties. The investigation also is designed to catch some of the particles in a special cup for direct analysis.

-- Wide-field Imager: principal investigator, Russell Howard, Naval Research Laboratory in Washington. This telescope will make 3-D images of the sun's corona, or atmosphere. The experiment actually will see the solar wind and provide 3-D images of clouds and shocks as they approach and pass the spacecraft. This investigation complements instruments on the spacecraft providing direct measurements by imaging the plasma the other instruments sample.

-- Fields Experiment: principal investigator, Stuart Bale, University of California Space Sciences Laboratory in Berkeley, Calif. This investigation will make direct measurements of electric and magnetic fields, radio emissions, and shock waves that course through the sun's atmospheric plasma. The experiment also serves as a giant dust detector, registering voltage signatures when specks of space dust hit the spacecraft's antenna.

-- Integrated Science Investigation of the Sun: principal investigator, David McComas of the Southwest Research Institute in San Antonio. This investigation consists of two instruments that will take an inventory of elements in the sun's atmosphere using a mass spectrometer to weigh and sort ions in the vicinity of the spacecraft.

-- Heliospheric Origins with Solar Probe Plus: principal investigator, Marco Velli of NASA's Jet Propulsion Laboratory in Pasadena, Calif. Velli is the mission's observatory scientist, responsible for serving as a senior scientist on the science working group. He will provide an independent assessment of scientific performance and act as a community advocate for the mission.

"This project allows humanity's ingenuity to go where no spacecraft has ever gone before," said Lika Guhathakurta, Solar Probe Plus program scientist at NASA Headquarters, in Washington. "For the very first time, we'll be able to touch, taste and smell our sun."

The Solar Probe Plus mission is part of NASA's Living with a Star Program. The program is designed to understand aspects of the sun and Earth's space environment that affect life and society. The program is managed by NASA'S Goddard Space Flight Center in Greenbelt, Md., with oversight from NASA's Science Mission Directorate's Heliophysics Division. The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., is the prime contractor for the spacecraft.